```
NORTH CAROLINA LEAGUE OF CONSERVATION
VOTERS, INC.; HENRY M. MICHAUX, JR., et al.,
    Plaintiffs,
REBECCA HARPER, et al.,
    Plaintiffs,
v.
REPRESENTATIVE DESTIN HALL, in his official capacity
as Chair of the House Standing Committee on Redistricting, et
al.,
SECOND AFFIDAVIT OF
DR. MOON DUCHIN ON
REMEDIES

I, Dr. Moon Duchin, having been duly sworn by an officer authorized to administer oaths, depose and state as follows:
1. I am over 18 years of age, legally competent to give this Affidavit, and have personal knowledge of the facts set forth in this Affidavit.
2. All of the quantitative work described in this Affidavit was performed by myself with the support of research assistants working under my direct supervision.

\section*{Background and qualifications}
3. I hold a Ph.D. and an M.S in Mathematics from the University of Chicago as well as an A.B. in Mathematics and Women's Studies from Harvard University.
4. I am a Professor of Mathematics and a Senior Fellow in the Jonathan M. Tisch College of Civic Life at Tufts University.
5. My general research areas are geometry, topology, dynamics, and applications of mathematics and computing to the study of elections and voting. My redistricting-related work has been published in venues such as the Election Law Journal, Political Analysis, Foundations of Data Science, the Notices of the American Mathematical Society, Statistics and Public Policy, the Virginia Policy Review, the Harvard Data Science Review, Foundations of Responsible Computing, and the Yale Law Journal Forum.
6. My research has had continuous grant support from the National Science Foundation since 2009, including a CAREER grant from 2013-2018. I am currently on the editorial board of the journals Advances in Mathematics and the Harvard Data Science Review. I was elected a Fellow of the American Mathematical Society in 2017 and was named a Radcliffe Fellow and a Guggenheim Fellow in 2018.
7. A current copy of my full CV is attached to this report.
8. I am compensated at the rate of \(\$ 400\) per hour.

\title{
Second Report on Remedial Districting Plans in North Carolina
}

\author{
Moon Duchin \\ Professor of Mathematics, Tufts University \\ Senior Fellow, Tisch College of Civic Life
}

February 20, 2022

\section*{1 Introduction}

Below, I will execute the analytical framework for evaluating remedial plans outlined in my report of February 18. The newly-passed plans SL-3 (new Congressional), SL-2 (new Senate), and SL-4 (new House) will be compared to the earlier proposals by the Legislature, and to the plaintiffs' alternative maps.


Figure 1: The eleven plans being compared in this report.

\section*{2 Close-Votes-Close-Seats}

Below, the outcomes of overlaying the plans on the elections will be presented in a series of tables and figures. I use the full set of 52 general elections that occurred in North Carolina with a partisan ID in the last census cycle. This is a powerful tool to understand the performance of plans without the use of any vote index or counterfactuals.

First, Table 1 overviews the overlays with numbers, then Figures 2-4 illustrate the same data. \({ }^{1}\)

The seats-votes scatterplots show all 52 data points for each map: one for each election, plotted as vote share for Democrats ( \(x\) axis) against seat share for Democrats ( \(y\) axis).

The northwest and southeast quadrants of these plots are the zones where anti-majoritarian outcomes fall. In each plot, I've marked the number of these outcomes in the associated quadrant. (I have excluded the JS120 race, which was so close to a 50-50 partisan outcome that its majoritarian properties are less meaningful.)

Out of 35 elections with a Republican vote advantage, the NCLCV-Cong plan has three instances where Democrats get more seats. Out of 16 elections with a Democratic vote advantage, the LCV plans have 0,5 , and 8 anti-majoritarian outcomes favoring Republicans.

In those 16 contests, the previous generation of plans from the legislature had 12, 12, and 14 anti-majoritarian outcomes (for Congress, Senate, and House, respectively). The new remedial proposals from the Legislature have 7, 7, and 8. And the Harper plaintiffs' Congressional and Senate plans have 1 and 2. (Note that the Harper plaintiffs did not submit a House plan.)

\footnotetext{
\({ }^{1}\) Codes for reading Table 1: AGC = Agriculture Commissioner; ATG = Attorney General; AUD = Auditor; GOV = Governor; INC = Insurance Commissioner; LAC = Labor Commissioner; LTG = Lieutenant Governor; PRS = President; SEN \(=\) Senator; SOS \(=\) Secretary of State; SUP \(=\) Superintendent of Public Instruction; TRS \(=\) Treasurer. The prefix JA* refers to judicial elections to the Court of Appeals (so that, for instance, JA118 is the election to the Seat 1 on the Court of Appeals in 2018), JS* are elections to the state Supreme Court. All other J* prefixes refer to an election to replace a specific judge on the Court of Appeals. The two-digit suffix designates the election year. Where there was more than one judicial candidate from a given party on the ballot, they candidates from that party were combined for this analysis, so that there is a total Republican vote and a total Democratic vote in that contest.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & D Vote Share & NCLCV-Cong & SL-174 & SL-3 & Harper-Cong & NCLCV-Sen & SL-173 & SL-2 & Harper-Sen & NCLCV-House & SL-175 & SL-4 \\
\hline GOV12 & 0.4418 & 4 & 4 & 4 & 6 & 18 & 16 & 16 & 15 & 44 & 41 & 39 \\
\hline AGC16 & 0.4444 & 4 & 4 & 4 & 6 & 17 & 17 & 17 & 16 & 42 & 40 & 40 \\
\hline LAC16 & 0.4475 & 5 & 4 & 4 & 5 & 20 & 18 & 18 & 17 & 45 & 42 & 43 \\
\hline JHU16 & 0.4563 & 5 & 4 & 4 & 6 & 19 & 18 & 19 & 17 & 49 & 42 & 44 \\
\hline AGC20 & 0.4615 & 4 & 3 & 4 & 5 & 19 & 17 & 19 & 19 & 51 & 40 & 44 \\
\hline JZA16 & 0.4619 & 5 & 4 & 4 & 6 & 21 & 19 & 20 & 18 & 50 & 43 & 46 \\
\hline JDI16 & 0.4653 & 6 & 4 & 4 & 6 & 21 & 19 & 20 & 19 & 53 & 44 & 47 \\
\hline LTG16 & 0.4665 & 6 & 4 & 4 & 6 & 21 & 19 & 20 & 21 & 54 & 44 & 47 \\
\hline LAC12 & 0.4674 & 5 & 4 & 5 & 6 & 20 & 20 & 16 & 15 & 51 & 44 & 43 \\
\hline AGC12 & 0.4678 & 5 & 4 & 5 & 6 & 18 & 18 & 16 & 16 & 50 & 43 & 42 \\
\hline SEN16 & 0.4705 & 6 & 4 & 4 & 6 & 21 & 19 & 20 & 22 & 55 & 43 & 47 \\
\hline TRS16 & 0.473 & 6 & 4 & 4 & 6 & 21 & 19 & 20 & 19 & 53 & 45 & 49 \\
\hline TRS20 & 0.4743 & 6 & 4 & 4 & 6 & 20 & 17 & 19 & 21 & 51 & 45 & 49 \\
\hline JA620 & 0.4806 & 7 & 4 & 4 & 6 & 21 & 17 & 19 & 21 & 55 & 46 & 53 \\
\hline PRS16 & 0.4809 & 7 & 4 & 4 & 7 & 22 & 19 & 21 & 23 & 56 & 48 & 52 \\
\hline JA420 & 0.4822 & 7 & 4 & 4 & 6 & 22 & 17 & 19 & 21 & 56 & 47 & 54 \\
\hline INC20 & 0.4823 & 7 & 4 & 4 & 7 & 23 & 18 & 20 & 22 & 56 & 47 & 53 \\
\hline LTG20 & 0.4836 & 7 & 4 & 4 & 6 & 21 & 18 & 21 & 21 & 55 & 46 & 54 \\
\hline JA720 & 0.4842 & 7 & 4 & 4 & 6 & 22 & 17 & 21 & 21 & 56 & 48 & 55 \\
\hline SUP20 & 0.4862 & 7 & 4 & 4 & 6 & 23 & 19 & 22 & 22 & 56 & 49 & 57 \\
\hline JA520 & 0.4874 & 7 & 4 & 4 & 6 & 22 & 18 & 21 & 21 & 57 & 49 & 57 \\
\hline JA218 & 0.4876 & 7 & 4 & 4 & 7 & 22 & 18 & 20 & 22 & 55 & 45 & 49 \\
\hline JS420 & 0.4879 & 7 & 4 & 5 & 7 & 24 & 19 & 22 & 23 & 56 & 49 & 57 \\
\hline J1320 & 0.4885 & 7 & 4 & 4 & 7 & 23 & 19 & 22 & 22 & 56 & 49 & 57 \\
\hline PRS12 & 0.4897 & 6 & 4 & 6 & 6 & 21 & 20 & 21 & 19 & 55 & 46 & 48 \\
\hline SEN20 & 0.491 & 7 & 4 & 6 & 6 & 24 & 20 & 22 & 23 & 56 & 48 & 56 \\
\hline LAC20 & 0.4918 & 8 & 4 & 5 & 7 & 25 & 21 & 23 & 23 & 58 & 51 & 56 \\
\hline SEN14 & 0.4919 & 6 & 4 & 6 & 6 & 22 & 20 & 20 & 21 & 52 & 46 & 49 \\
\hline PRS20 & 0.4932 & 8 & 4 & 5 & 6 & 25 & 20 & 22 & 22 & 60 & 50 & 59 \\
\hline JS220 & 0.4934 & 8 & 4 & 6 & 7 & 24 & 21 & 22 & 24 & 59 & 51 & 58 \\
\hline SUP16 & 0.4941 & 6 & 4 & 6 & 7 & 23 & 22 & 23 & 25 & 57 & 49 & 53 \\
\hline JS118 & 0.4955 & 7 & 4 & 5 & 7 & 25 & 20 & 22 & 23 & 58 & 50 & 54 \\
\hline INC16 & 0.496 & 6 & 4 & 5 & 7 & 22 & 22 & 22 & 25 & 57 & 50 & 53 \\
\hline JST16 & 0.4976 & 7 & 4 & 6 & 7 & 23 & 21 & 22 & 25 & 58 & 50 & 54 \\
\hline LTG12 & 0.4992 & 7 & 5 & 6 & 6 & 22 & 22 & 22 & 22 & 58 & 50 & 53 \\
\hline JS120 & 0.5 & 8 & 4 & 6 & 7 & 27 & 22 & 25 & 27 & 60 & 52 & 60 \\
\hline AUD16 & 0.5007 & 8 & 5 & 6 & 7 & 23 & 22 & 23 & 26 & 56 & 51 & 51 \\
\hline GOV16 & 0.5011 & 7 & 4 & 6 & 7 & 27 & 20 & 23 & 26 & 58 & 50 & 54 \\
\hline ATG20 & 0.5013 & 8 & 4 & 6 & 7 & 25 & 21 & 23 & 24 & 58 & 51 & 59 \\
\hline ATG16 & 0.5027 & 7 & 4 & 6 & 7 & 23 & 20 & 23 & 24 & 57 & 50 & 54 \\
\hline JA118 & 0.5078 & 8 & 4 & 7 & 7 & 26 & 22 & 24 & 25 & 58 & 51 & 59 \\
\hline AUD20 & 0.5088 & 8 & 4 & 7 & 7 & 28 & 24 & 26 & 28 & 61 & 54 & 62 \\
\hline JA318 & 0.5091 & 8 & 4 & 6 & 7 & 26 & 21 & 25 & 25 & 59 & 52 & 58 \\
\hline SOS20 & 0.5116 & 8 & 5 & 8 & 7 & 28 & 24 & 26 & 28 & 62 & 53 & 61 \\
\hline JGE16 & 0.5131 & 8 & 5 & 6 & 7 & 25 & 22 & 25 & 28 & 59 & 52 & 54 \\
\hline INC12 & 0.5186 & 8 & 5 & 6 & 6 & 22 & 22 & 22 & 25 & 61 & 55 & 57 \\
\hline SOS16 & 0.5226 & 9 & 5 & 7 & 7 & 24 & 24 & 24 & 27 & 62 & 57 & 60 \\
\hline GOV20 & 0.5229 & 8 & 4 & 8 & 8 & 27 & 23 & 25 & 27 & 63 & 58 & 64 \\
\hline AUD12 & 0.5371 & 9 & 8 & 7 & 7 & 28 & 27 & 27 & 29 & 65 & 61 & 64 \\
\hline SOS12 & 0.5379 & 9 & 7 & 8 & 7 & 26 & 26 & 25 & 29 & 63 & 59 & 62 \\
\hline TRS12 & 0.5383 & 9 & 7 & 10 & 7 & 24 & 25 & 25 & 28 & 65 & 59 & 63 \\
\hline SUP12 & 0.5424 & 9 & 8 & 9 & 8 & 28 & 28 & 28 & 31 & 66 & 61 & 64 \\
\hline
\end{tabular}

Table 1: Do close votes translate to close seats? I have identified, for each plan, the elections with a partisan margin of closer than six points, but where the outcome falls outside of the range of 6-8 Congressional seats, 23-27 Senate seats, or 55-65 House seats.


Figure 2: Congressional comparison. Top figure shows votes and seats for NCLCV-Cong (green) and the now-invalidated SL-174 (maroon); below that are SL-3 (red) and Harper-Cong (yellow). The number of anti-majoritarian outcomes for each map is noted.


Figure 3: Senate comparison. Top figure shows votes and seats for NCLCV-Sen (green) and the now-invalidated SL-173 (maroon); below that are SL-2 (red) and Harper-Sen (yellow). The number of anti-majoritarian outcomes for each map is noted.


Figure 4: House comparison. Top figure shows votes and seats for NCLCV-House (green) and the now-invalidated SL-175 (maroon); below that is SL-4 (red). The number of anti-majoritarian outcomes for each map is noted.

\section*{3 Summary scores of partisan fairness}

\subsection*{3.1 Recap of metrics}

Recall the following metrics of partisan fairness, to be presented in Tables 2-4.
- Efficiency gap (EG) is the difference in "wasted" votes for the two parties, across the state, as a share of votes cast [10]. The authors of the paper that popularized efficiency gap (Stephanopoulos-McGhee) later advocated for a simplified efficiency gap formula \(E G=2 V-S-\frac{1}{2}\), where \(V\) is the vote share in an election and \(S\) is the seat share. Original efficiency gap and simplified efficiency gap would be exactly equal if the districts had equal turnout; it's the simplified formula that was invoked, for example, in the language for the Freedom To Vote act. The authors proposed .08, later refined to .07, as the flag for a presumptive gerrymander. \({ }^{2}\)
- Partisan symmetry is a family of scores based on the principle of table-turning: if the votes for the parties were reversed, would the representation also be reversed? An asymmetric plan is one in which one party fares better with its portion of support than the other party would with the same portion. Scores in this group include the mean-median gap \((M M)\), the partisan bias score (PB), and the partisan Gini (PG). The mean-median gap literally takes the difference between the average vote share in a district and the median, or middle, district (or the average of the two middle districts when the number of districts is even). The gap is zero when the middle district looks like the state as a whole, so that half the districts are more favorable to one party and half are more favorable to the other. Partisan bias is described in the literature as measuring how much "extra" representation each party would secure in a hypothetical 50-50 election. Finally, partisan Gini is a summary statistic for all of the various kinds of symmetry measures in the political science literature. The "Partisan Symmetry Standard" of King and his co-authors asks that a seats-votes curve be literally symmetric about the center point, meaning that it predicts exactly the same representation for either party at any share of the vote [8]. The partisan Gini, first proposed by Bernard Grofman in 1983, takes this literally, measuring the area between the curve and its mirror image [9]. This is an unsigned metric, with zero as an ideal. (When the \(P G\) score is zero, all other symmetry scores, like mean-median and partisan bias, are necessarily zero as well.)
- The metric I have called Eguia county skew (ECS) is based on economist Jon Eguia's "jurisdictional partisan advantage" [7]. Eguia built a metric based on comparing the actual representation secured by a party under a vote pattern to the representation if cities and counties played the role of districts. I have applied it here only to counties, because of the fundamental importance of counties in North Carolina redistricting in particular. A simple way to explain this Eguia-style metric is as follows: in a particular election, what percentage of North Carolinians live in counties that favored Republicans? That is the benchmark for Republican representation; if their seat share is higher, the map is tilted Republican, and if lower, the map is tilted Democratic.

\footnotetext{
\({ }^{2}\) In paragraph 167 of the North Carolina Supreme Court's recent decision in this case, it is noted that "With regard to the efficiency gap measure, courts have found "that an efficiency gap above 7\% in any districting plan's first election year will continue to favor that party for the life of the plan."" (Quoting the U.S. Supreme Court, from Whitford v. Gill).
}

From these three types, I have chosen five signed scores to present in Tables 2-3: EG, simplified \(E G, M M, P B\), and \(E C S\). For all five scores, zero is ideal.

After that, I will use a second table, Table 4 to present the seat average for each party, the size of disproportionality for each election set, and the partisan Gini PG.

In both of these tables, I will use three sets of elections: first, the full set of 52 general elections. Next, the 35 non-judicial contests. And finally, the 14 "up-ballot" contests, which are the first five to appear on the ballot: President, U.S. Senator, Governor, Lieutenant Governor, and Attorney General. (These each occurred three times in the previous cycle, except for Attorney General, which was only contested twice.)

\subsection*{3.2 Comparison of metrics}

We will see a phenomenon clearly visible in the following tour of the metrics (which was actually already apparent in Table 1 and Figures 2-4): when given a chance to re-draw maps, the Legislature produced maps that split the difference between the partisan properties of the original proposals and the properties observed in the plaintiffs' maps.

At the Congressional level, this brings the mean-median scores down substantially, but leaves all the other scores at extremely elevated levels.


Table 2: Five simplified scores of partisan fairness, averaged over different sets of elections. These five metrics are all signed, meaning that they can take positive or negative values; positive and negative scores are intended to flag an advantage to Democrats and Republicans, respectively. \(E G\) and \(M M\) are computed as a share of votes; \(P B\) and the Eguia score are computed as a share of seats. Colors are intended for ease of comparisons and are consistent within each score.

For the Senate plan, the split-the-difference approach leaves significantly inferior scores on all metrics of partisan fairness than the ones, very near zero, in the plaintiffs' maps. For the House, on the other hand, the new plan is now down to a level that is markedly better in several of the metrics.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{3}{|c|}{NCLCV-Sen} & \multicolumn{3}{|c|}{SL-173 (old Senate plan)} \\
\hline & \begin{tabular}{l}
All \\
(52 contests)
\end{tabular} & Non-judicial (35 contests) & \begin{tabular}{l}
Up-ballot \\
(14 contests)
\end{tabular} & \begin{tabular}{l}
All \\
(52 contests)
\end{tabular} & Non-judicial (35 contests) & Up-ballot (14 contests) \\
\hline Efficiency Gap & -0.020 & -0.024 & -0.017 & -0.075 & -0.068 & -0.080 \\
\hline Simplified \(E G\) & -0.023 & -0.028 & -0.021 & -0.076 & -0.070 & -0.081 \\
\hline Mean-median & -0.009 & -0.012 & -0.009 & -0.036 & -0.036 & -0.037 \\
\hline Partisan Bias & -0.015 & -0.023 & -0.016 & -0.072 & -0.069 & -0.08 \\
\hline Eguia County Skew & -0.040 & -0.041 & -0.030 & -0.093 & -0.083 & -0.09 \\
\hline & \multicolumn{3}{|c|}{SL-2 (new Senate plan)} & \multicolumn{3}{|c|}{Harper-Sen} \\
\hline & \begin{tabular}{l}
All \\
(52 contests)
\end{tabular} & Non-judicial (35 contests) & Up-ballot (14 contests) & \begin{tabular}{l}
All \\
(52 contests)
\end{tabular} & Non-judicial (35 contests) & Up-ballot (14 contests) \\
\hline Efficiency Gap & -0.045 & -0.048 & -0.046 & -0.022 & -0.023 & -0.029 \\
\hline Simplified \(E G\) & -0.048 & -0.051 & -0.050 & -0.027 & -0.028 & -0.034 \\
\hline Mean-median & -0.020 & -0.022 & -0.021 & -0.003 & -0.005 & -0.003 \\
\hline Partisan Bias & -0.044 & -0.045 & -0.049 & -0.013 & -0.018 & -0.002 \\
\hline Eguia County Skew & -0.065 & -0.064 & -0.059 & -0.044 & -0.041 & -0.043 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccc|ccc|}
\hline & \multicolumn{3}{|c|}{ NCLCV-House } & \multicolumn{3}{c|}{ SL-175 (old House plan) } \\
& All & Non-judicial & Up-ballot & All & Non-judicial & Up-ballot \\
(52 contests) & (35 contests) & (14 contests) & (52 contests) & (35 contests) & (14 contests) \\
\hline \hline Efficiency Gap & -0.020 & -0.022 & -0.017 & -0.076 & -0.075 & -0.078 \\
Simplified EG & -0.014 & -0.016 & -0.012 & -0.074 & -0.074 & -0.077 \\
Mean-median & -0.015 & -0.015 & -0.017 & -0.039 & -0.039 & -0.04 \\
Partisan Bias & -0.018 & -0.019 & -0.018 & -0.082 & -0.082 & -0.086 \\
Eguia County Skew & -0.031 & -0.030 & -0.021 & -0.091 & -0.088 & -0.086 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccc|}
\hline & \multicolumn{3}{|c|}{ SL-4 (new House plan) } \\
& All & \begin{tabular}{c} 
Non-judicial \\
(52 contests) \\
(35 contests)
\end{tabular} & \begin{tabular}{c} 
Up-ballot \\
(14 contests)
\end{tabular} \\
\hline \hline Efficiency Gap & -0.039 & -0.043 & -0.039 \\
Simplified EG & -0.037 & -0.042 & -0.039 \\
Mean-median & -0.019 & -0.021 & -0.019 \\
Partisan Bias & -0.042 & -0.045 & -0.044 \\
Eguia County Skew & -0.054 & -0.056 & -0.048 \\
\hline
\end{tabular}

Table 3: The same scores, now assessed for state Senate and state House maps. Across the board, the new maps from the Legislature split the difference between the invalidated plans and the LCV remedial proposals. Colors are intended for ease of comparisons and are consistent within each score.

When we turn to seats by party and the partisan Gini, the story is quite similar (Table 4).
\begin{tabular}{|c|ccc|ccc|}
\hline & \multicolumn{3}{|c|}{ NCLCV-Cong } & \multicolumn{3}{c|}{ SL-174 (old Cong plan) } \\
& All & \begin{tabular}{c} 
Non-judicial
\end{tabular} & Up-ballot & All & Non-judicial & Up-ballot \\
(52 contests) & (35 contests) & (14 contests) & (52 contests) & (35 contests) & (14 contests)
\end{tabular}
\begin{tabular}{|c|ccc|ccc|}
\hline & \multicolumn{3}{|c|}{ NCLCV-Sen } & \multicolumn{3}{c|}{ SL-173 (old Senate plan) } \\
& All & Non-judicial & Up-ballot & All & Non-judicial & Up-ballot \\
(52 contests) & (35 contests) & (14 contests) & (52 contests) & (35 contests) & (14 contests)
\end{tabular}
\begin{tabular}{|c|ccc|ccc|}
\hline & \multicolumn{3}{|c|}{ NCLCV-House } & \multicolumn{3}{c}{ SL-175 (old House plan) } \\
& All \\
(52n-judicial & Up-ballot & All & \(\begin{array}{c}\text { Non-judicial } \\
\text { Up-ballot } \\
\text { (35 contests) }\end{array}\) & \(\begin{array}{c}\text { (14 contests) }\end{array}\) & (52 contests) & (35 contests) \\
(14 contests)
\end{tabular}\(]\)
\begin{tabular}{|c|ccc|}
\hline & \multicolumn{3}{|c|}{ SL-4 (new House plan) } \\
& All & \begin{tabular}{c} 
Non-judicial \\
(52 contests)
\end{tabular} & \begin{tabular}{c} 
Up-ballot \\
(35 contests)
\end{tabular} \\
(14 contests)
\end{tabular}\(|\)\begin{tabular}{cccc} 
& 53.4 & 53.2 & 67.5 \\
\hline \hline D Seats & 66.6 & 66.8 & 67.5 \\
R Seats & -5.5 & -5.9 & -6.1 \\
Disproportionality & 0.037 & 0.037 & 0.039 \\
\hline
\end{tabular}

Table 4: Average seat totals and the distance from proportionality. The partisan Gini score measures how far the seats-votes curve is from perfect symmetry. Across the board, the "splits the difference" trend is apparent.

Finally, for another way of slicing the same data:
\begin{tabular}{ccccc} 
& \multicolumn{2}{c}{ Up-ballot generals (14) } & \multicolumn{2}{c}{ All generals (52) } \\
& D vote share & D seat share & D vote share & D seat share \\
\hline \hline NCLCV-Cong & & .4796 & & .4931 \\
SL-174 (old Cong plan) & .4883 & .2908 & .4911 & .3118 \\
SL-3 (new Cong plan) & & .3857 & .4857 \\
Harper-Cong & .4571 & & .4643 \\
\hline NCLCV-Sen & & .4557 & & .4592 \\
SL-173 (old Sen plan) & .4883 & .3957 & .4911 & .4065 \\
SL-2 (new Sen plan) & & .4280 & & .4340 \\
Harper-Sen & .4420 & & .4560 \\
\hline NCLCV-House & & .4649 & & .4684 \\
SL-175 (old House plan) & .4883 & .3994 & .4911 & .4080 \\
SL-4 (new House plan) & & .4375 & & .4450
\end{tabular}

Table 5: Comparing overall fidelity of representation to the voting preferences of the electorate. As from every other point of view, the new plans from the Legislature split the difference from their original proposal to the LCV plans, which score better on all metrics of partisan fairness.

\section*{4 Comparison to Barber report}

I have described the scores on a range of metrics that result from overlaying eleven plans with 52 elections, and I've also presented several more selective subsets of the elections, to make it clear the that findings are robust.

Dr. Michael Barber filed a report on February 18 in which he obtains systematically less severe bias indicators for the Legislature's new proposed maps.

For instance, consider the reported efficiency gaps.
\begin{tabular}{cccc} 
& \begin{tabular}{c} 
Barber method \\
(12 elections)
\end{tabular} & \begin{tabular}{c} 
current method \\
(Barber elections) \\
current method \\
(14 "up-ballot")
\end{tabular} \\
SL-174 (old) & -.195 & -.195 & -.181 \\
SL-3 (new) & -.053 & -.093 & -.088 \\
\hline SL-173 (old) & -.080 & -.078 & -.080 \\
SL-2 (new) & -.040 & -.036 & -.046 \\
\hline SL-175 (old) & -.072 & -.079 & -.078 \\
SL-4 (new) & -.008 & -.024 & -.039
\end{tabular}

Table 6: Efficiency gap in each election using the wasted votes method (which is described above as the "original" \(E G\) ).

I have made a serious attempt at replication in the very limited time available and have not been able to figure out how Dr. Barber arrives at his numbers, exactly. My conclusion is one of two things: either the discrepancy owes to the problematic way he blends elections together, which I will describe below, or he is actually using a different method from the one he describes in his report. \({ }^{3}\)

\footnotetext{
\({ }^{3}\) For instance, there are published methods that introduce statistical corrections into the data for fractional seats, or that randomly add noise to an election index. He has not said that he is doing either of these, but it is possible that he is employing software that does this without realizing it.
}

Dr. Barber describes his election index as follows: "if a district has an index value of 0.51 , this would mean that \(51 \%\) of the votes cast for the two major parties across these 12 elections went to Democratic candidates." This means that he is adding up the votes, rather than weighting all elections equally. I will make two observations about the problems this causes.

Weighting. The first effect is to upweight higher-turnout elections. To see the effects of the up-weighting, note that ten of 12 elections are from 2020 (see Table 7 for the list), which means that he is giving over \(85 \%\) of the weight to a single election year. \({ }^{4}\) Dr. Barber indicates that he is using the same twelve elections used by Dr. Mattingly in an earlier report-but that is a selective attribution. Mattingly uses a larger set of 15 elections for his statewide analysis. Notably dropped are ATG16 and GOV16-two elections that would counteract the dominance of 2020, and that show anti-majoritarian outcomes under the SL-3 map.

Faulty averaging: practical illustration. Consider the election-by-election efficiency gaps for Barber's 12 elections.
\begin{tabular}{c|cccccc} 
& PRS20 & SEN20 & GOV20 & LTG20 & ATG20 & SOS20 \\
\hline EG & -0.1276 & -0.0532 & 0.0225 & -0.1792 & -0.0742 & 0.0457 \\
\hline D seats & 5 & 6 & 8 & 4 & 6 & 8 \\
D votes & .4932 & .4910 & .5229 & .4836 & .5013 & .5116 \\
& & & & & & \\
& TRS20 & AGC20 & AUD20 & LAC20 & PRS16 & LTG16 \\
\hline EG & -0.1602 & -0.1349 & -0.0177 & -0.1239 & -0.1693 & -0.1386 \\
\hline D seats & 4 & 4 & 7 & 5 & 4 & 4 \\
D votes & .4743 & .4615 & .5088 & .4918 & .4809 & .4665
\end{tabular}
average of these \(E G\) values: -0.09255
Barber's reported EG: -. 0529
Table 7: Election-by-election scores in Barber's elections for the original efficiency gap-the wasted-votes method that Barber describes in his report.

It is unreasonable on its face to take a set of actually observed elections that show such large efficiency gaps and propose a style of blending them that hides that effect.

Faulty averaging: abstract example. How is this happening? Most partisan scores are non-linear, meaning that if you average elections and then compute the score, this is NOT the same as reporting the average of the by-election scores.

For efficiency gap specifically, adding elections creates an unintelligible blended election from the point of view of the meaning of the metric. Is a vote wasted or not wasted? That depends on who wins the district. But a "wasted vote" is a property of the individual election, not of the composite.

Here is an illustrative example. Suppose that there have been ten elections in a twodistrict state. Nine of them had 51-49 wins for Party A in both districts. The tenth went 80-20 the other way, in favor of Party B. The nine tight elections had one wasted vote for Party A and 49 for Party B in each district, for an efficiency gap of \(\frac{2(1-49)}{200}\), or -.48 , indicating a huge advantage to Party A. (The largest possible magnitude of the gap is .5, so this is a truly massive gerrymander.) The last election had \(E G=\frac{2(20-30)}{200}=-.1\), also indicating advantage to Party A. Let's apply Dr. Barber's method. We sum all the elections, so that now each district

\footnotetext{
\({ }^{4}\) For instance, the total major-party cast votes in PRS20 were \(5,443,067\) (highest) while for LTG16 it was \(4,438,769\) (lowest), giving the first contest \(23 \%\) more weight. Applying that factor of 1.2 to ten elections out of twelve gives them a \(12 / 14\) share of the weight, which is about \(85.7 \%\).
}
has 484 votes for Party A and 516 votes for Party B. Now the efficiency gap is \(\frac{2(479-21)}{2000}\), or +.458 . This looks like a single tight election, and an epic gerrymander, for Party B. That is, summing the elections gives you an uninterpretable stew. It takes a situation where one party has thin-sliced its advantage to repeatedly convert narrow preferences to a \(2-0\) sweep of seats, and it obscures that pattern completely.

Let me repeat what is illustrated by this example: an application of Barber's method takes ten elections where nine had \(E G=-.48\) and the last had \(E G=-.1\) and, by averaging the contests into an election index, produces an overall \(E G\) of +.458 . It is a strange method indeed if ten negative numbers can average to a positive total.

The same flaws permeate Dr. Barber's entire analysis, because each of his partisan metric calculations draws on the same problematic election index. This implicates not only his efficiency gap scores but also his mean-median scores and his partisan symmetry scores, which are likewise based on non-linear combinations of electoral data. (That is, the median of an average is not the average of the medians, and so on.) For each of his scores, he has applied an unreasonable averaging method that makes the systematic advantage for Republicans disappear.

North Carolina provides an extraordinary opportunity to base partisan determinations on a large number of actual election patterns from the last ten years, many of which were extremely close elections. We have a chance to employ methods that take advantage of this large naturalistically observed dataset rather than those that hide its systematic properties.

\section*{5 Electoral opportunity for Black voters}

In my previous report, I explained how I constructed a determination of which districts are effective at providing Black voters with an opportunity to elect candidates of choice.

Running the same effectiveness count for the current plans, I obtain the following numbers.

\section*{Effective districts for Black voters}
\begin{tabular}{|c|c|c|c|c|}
\hline & NC-LCV maps & previous Leg. maps & new Leg. maps & Harper maps \\
\hline Congress & \begin{tabular}{l}
4 \\
(CD 2, 4, 9, 11)
\end{tabular} & \[
\begin{aligned}
& \hline \hline 2 \\
& (C D 2,9)
\end{aligned}
\] & \[
\begin{aligned}
& \hline 2 \\
& (C D 1,12)
\end{aligned}
\] & \begin{tabular}{l}
\[
3
\] \\
(CD 1, 6, 12)
\end{tabular} \\
\hline Senate & 12
(SD 1, 5, 11, 14, 18,
\(19,26,27,32,38,39\),
40 ) & \[
\begin{aligned}
& 8 \\
& \text { (SD 5, 11, 14, 19, 28, } \\
& 38,39,40 \text { ) }
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& \text { (SD 3, 5, 11, 14, 19, } \\
& 27,28,38,40,41 \text { ) }
\end{aligned}
\] & ```
11
(SD 3, 5, 11, 13, 16,
19, 27, 28, 38, 40, 41)
``` \\
\hline House & 36
(HD 2, 8, 9, 10, 23, 24 , 25, 27, 31, 32, 33, 38, \(39,40,42,43,44,45\), 48, 57, 58, 59, 60, 61, \(63,66,71,88,92,99\), 100, 101, 102, 106, & 24
(HD 8, 23, 24, 25, 27, \(32,38,39,42,44\), \(48,57,58,60,66,71\), 92, 99, 100, 101, 102, 106, 107, 112) & \begin{tabular}{l}
27 \\
(HD 8, 23, 24, 25, 27 , \(31,32,33,38,39,42\), \(44,45,48,58,60,61\), 66, 71, 92, 99, 100, 101, 102, 106, 107, 112)
\end{tabular} & - \\
\hline
\end{tabular}

Table 8: The plaintiffs' plans secure additional electoral opportunity for Black voters in North Carolina.

For comparison, Black voting age population (BVAP) levels by district can be found in Appendix A .

\section*{6 Conclusion}

At a high level, the situation with the Legislature's new maps of all three types is clear throughout all of the analysis presented here: they chose maps with intermediate partisan properties between the now-invalidated original proposals and a truly even-handed map. This is quite evident in Table 4, where the number of R Congressional seats was 7.1 in the LCV maps and 9.6 in the invalidated plans; the new plans average to 8.6 . For Senate, the new plans split the difference between 27.0 and 29.7 seats, giving 28.3. And in the House, they split the difference between 56.2 seats and 49.0 , giving 53.4.

I find the Legislature's new Congressional and Senate plans to be particularly problematic from a Close-Votes-Close-Seats perspective, often giving four out of 14 Congressional seats (28\%) or twenty out of 50 Senate seats (40\%) to Democrats even when Democrats poll at better than \(48 \%\) of the major-party vote. This is borne out in the partisan fairness scores, which show the new proposals splitting the difference from the now-invalidated maps to the plaintiffs' alternatives.

The plaintiffs' proposed remedial plans simply perform far better on the Close-Votes-CloseSeats norm and on the full suite of partisan fairness scores. For the scores, there are 63 opportunities to compare the plans numerically: seven metrics ( \(E G\), simplified \(E G, M M, P B\), disproportionality, and \(P G\) ) times three election sets (all, non-judicial, up-ballot) times three maps (Congress, Senate, House). The newly enacted plans improve on their predecessors all 63 times, but they likewise fall significantly short of the LCV maps all 63 times (and fall short of the Harper maps in 42 of 42 available comparisons). It is as consistent and robust of a finding as can be.

The LCV plans are also superlative on the traditional districting principles (recalling previous reports) and contain a large number of districts that provide effective electoral opportunitybut not a guarantee-for Black voters. In sum, they are an excellent choice of remedial plans for adoption by the Court.

\section*{References}
[1] Assaf Bar-Natan, Elle Najt, and Zachary Schutzmann, The gerrymandering jumble: Map projections permute districts' compactness scores. Cartography and Geographic Information Science, Volume 47, Issue 4, 2020, 321-335.
[2] Richard Barnes and Justin Solomon, Gerrymandering and Compactness: Implementation Flexibility and Abuse. Political Analysis, Volume 29, Issue 4, October 2021, 448-466.
[3] Amariah Becker, Moon Duchin, Dara Gold, and Sam Hirsch, Computational redistricting and the Voting Rights Act. Election Law Journal. Volume 20, Number 4, 2021.
https://www.liebertpub.com/doi/epdf/10.1089/elj.2020.0704
[4] Christopher Cooper, Blake Esselstyn, Gregory Herschlag, Jonathan Mattingly, and Rebecca Tippett, NC General Assembly County Clusterings from the 2020 Census. https://sites.duke.edu/quantifyinggerrymandering/files/2021/08/ countyClusters2020.pdf
[5] Daryl DeFord, Natasha Dhamankar, Moon Duchin, Varun Gupta, Mackenzie McPike, Gabe Schoenbach, Ki Wan Sim, Implementing partisan symmetry: Problems and paradoxes. Political Analysis, to appear 2022.
Preprint available at https://arxiv.org/pdf/2008.06930.pdf.
[6] Moon Duchin, Taissa Gladkova, Eugene Henninger-Voss, Heather Newman, and Hannah Wheelen, Locating the Representational Baseline: Republicans in Massachusetts. Election Law Journal, Volume 18, Number 4, 2019, 388-401.
https://www.liebertpub.com/doi/pdf/10.1089/elj. 2018.0537
[7] Jon X. Eguia, A Measure of Partisan Advantage in Redistricting. Election Law Journal, published online October 8, 2021. https://doi.org/10.1089/elj.2020.0691
[8] J.N. Katz, G. King, E. Rosenblatt, Theoretical Foundations and Empirical Evaluations of Partisan Fairness in District-Based Democracies. American Political Science Review, Volume 114, Issue 1, 2020, 164-178.
[9] Bernard Grofman, Measures of Bias and Proportionality in Seats-Votes Relationships. Political Methodology, Vol. 9, No. 3 (1983), 295-327.
[10] N. Stephanopoulos and E. McGhee, Partisan gerrymandering and the efficiency gap. The University of Chicago Law Review, pages 831-900, 2015.

\section*{A BVAP across the districts of the proposed remedial plans}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ NCLCV-Cong } \\
\hline CD & B1VAPP & APBVAP \\
\hline 1 & 0.289 & 0.304 \\
2 & 0.332 & 0.347 \\
3 & 0.118 & 0.131 \\
4 & 0.319 & 0.344 \\
5 & 0.226 & 0.245 \\
6 & 0.227 & 0.242 \\
7 & 0.115 & 0.128 \\
8 & 0.123 & 0.132 \\
9 & 0.277 & 0.298 \\
10 & 0.232 & 0.25 \\
11 & 0.271 & 0.289 \\
12 & 0.121 & 0.132 \\
13 & 0.114 & 0.124 \\
14 & 0.032 & 0.039 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ SL-3 } \\
\hline CD & B1VAP & APBVAP \\
\hline 1 & 0.403 & 0.42 \\
2 & 0.205 & 0.224 \\
3 & 0.17 & 0.185 \\
4 & 0.249 & 0.266 \\
5 & 0.156 & 0.168 \\
6 & 0.239 & 0.257 \\
7 & 0.23 & 0.252 \\
8 & 0.176 & 0.19 \\
9 & 0.182 & 0.195 \\
10 & 0.071 & 0.079 \\
11 & 0.033 & 0.04 \\
12 & 0.317 & 0.339 \\
13 & 0.162 & 0.175 \\
14 & 0.196 & 0.211 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Harper-Cong } \\
\hline CD & B1VAP & APBVAP \\
\hline 1 & 0.396 & 0.412 \\
2 & 0.225 & 0.243 \\
3 & 0.173 & 0.187 \\
4 & 0.247 & 0.263 \\
5 & 0.08 & 0.089 \\
6 & 0.316 & 0.336 \\
7 & 0.166 & 0.178 \\
8 & 0.111 & 0.121 \\
9 & 0.181 & 0.197 \\
10 & 0.127 & 0.137 \\
11 & 0.032 & 0.039 \\
12 & 0.312 & 0.334 \\
13 & 0.127 & 0.141 \\
14 & 0.297 & 0.321 \\
\hline
\end{tabular}

Table 9: Non-Hispanic Black alone (B1) and any-part-Black (APB) voting age population in the proposed remedial plans for Congress.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{NCLCV-Sen} & \multicolumn{3}{|c|}{SL-2} & \multicolumn{3}{|c|}{Harper-Sen} \\
\hline SD & B1VAP & APBVAP & SD & B1VAP & APBVAP & SD & B1VAP & APBVAP \\
\hline 1 & 0.408 & 0.423 & 1 & 0.165 & 0.175 & 1 & 0.165 & 0.175 \\
\hline 2 & 0.165 & 0.175 & 2 & 0.253 & 0.267 & 2 & 0.253 & 0.267 \\
\hline 3 & 0.253 & 0.267 & 3 & 0.408 & 0.423 & 3 & 0.408 & 0.423 \\
\hline 4 & 0.334 & 0.35 & 4 & 0.334 & 0.35 & 4 & 0.334 & 0.35 \\
\hline 5 & 0.385 & 0.403 & 5 & 0.385 & 0.403 & 5 & 0.385 & 0.403 \\
\hline 6 & 0.13 & 0.153 & 6 & 0.13 & 0.153 & 6 & 0.13 & 0.153 \\
\hline 7 & 0.125 & 0.138 & 7 & 0.105 & 0.117 & 7 & 0.1 & 0.112 \\
\hline 8 & 0.12 & 0.128 & 8 & 0.139 & 0.148 & 8 & 0.142 & 0.152 \\
\hline 9 & 0.228 & 0.239 & 9 & 0.228 & 0.239 & 9 & 0.228 & 0.239 \\
\hline 10 & 0.154 & 0.167 & 10 & 0.154 & 0.167 & 10 & 0.154 & 0.167 \\
\hline 11 & 0.352 & 0.366 & 11 & 0.352 & 0.366 & 11 & 0.352 & 0.366 \\
\hline 12 & 0.189 & 0.206 & 12 & 0.189 & 0.206 & 12 & 0.189 & 0.206 \\
\hline 13 & 0.175 & 0.188 & 13 & 0.181 & 0.199 & 13 & 0.246 & 0.267 \\
\hline 14 & 0.312 & 0.332 & 14 & 0.406 & 0.43 & 14 & 0.115 & 0.131 \\
\hline 15 & 0.136 & 0.152 & 15 & 0.128 & 0.143 & 15 & 0.124 & 0.138 \\
\hline 16 & 0.08 & 0.092 & 16 & 0.094 & 0.107 & 16 & 0.382 & 0.405 \\
\hline 17 & 0.091 & 0.104 & 17 & 0.102 & 0.115 & 17 & 0.087 & 0.099 \\
\hline 18 & 0.323 & 0.347 & 18 & 0.215 & 0.23 & 18 & 0.169 & 0.181 \\
\hline 19 & 0.439 & 0.481 & 19 & 0.356 & 0.392 & 19 & 0.363 & 0.397 \\
\hline 20 & 0.22 & 0.237 & 20 & 0.256 & 0.273 & 20 & 0.39 & 0.41 \\
\hline 21 & 0.176 & 0.195 & 21 & 0.259 & 0.284 & 21 & 0.252 & 0.278 \\
\hline 22 & 0.364 & 0.382 & 22 & 0.326 & 0.344 & 22 & 0.195 & 0.211 \\
\hline 23 & 0.155 & 0.167 & 23 & 0.154 & 0.167 & 23 & 0.154 & 0.167 \\
\hline 24 & 0.278 & 0.296 & 24 & 0.278 & 0.296 & 24 & 0.278 & 0.296 \\
\hline 25 & 0.165 & 0.178 & 25 & 0.165 & 0.179 & 25 & 0.17 & 0.184 \\
\hline 26 & 0.332 & 0.35 & 26 & 0.207 & 0.221 & 26 & 0.283 & 0.3 \\
\hline 27 & 0.297 & 0.317 & 27 & 0.272 & 0.29 & 27 & 0.249 & 0.266 \\
\hline 28 & 0.282 & 0.303 & 28 & 0.43 & 0.456 & 28 & 0.376 & 0.399 \\
\hline 29 & 0.171 & 0.18 & 29 & 0.169 & 0.178 & 29 & 0.169 & 0.178 \\
\hline 30 & 0.084 & 0.092 & 30 & 0.084 & 0.092 & 30 & 0.084 & 0.092 \\
\hline 31 & 0.122 & 0.135 & 31 & 0.207 & 0.222 & 31 & 0.222 & 0.239 \\
\hline 32 & 0.329 & 0.35 & 32 & 0.234 & 0.252 & 32 & 0.224 & 0.24 \\
\hline 33 & 0.14 & 0.149 & 33 & 0.14 & 0.149 & 33 & 0.14 & 0.149 \\
\hline 34 & 0.184 & 0.202 & 34 & 0.184 & 0.201 & 34 & 0.184 & 0.201 \\
\hline 35 & 0.105 & 0.116 & 35 & 0.106 & 0.117 & 35 & 0.1 & 0.112 \\
\hline 36 & 0.04 & 0.046 & 36 & 0.039 & 0.045 & 36 & 0.04 & 0.046 \\
\hline 37 & 0.104 & 0.115 & 37 & 0.104 & 0.114 & 37 & 0.105 & 0.116 \\
\hline 38 & 0.354 & 0.377 & 38 & 0.411 & 0.437 & 38 & 0.422 & 0.448 \\
\hline 39 & 0.4 & 0.426 & 39 & 0.212 & 0.231 & 39 & 0.203 & 0.223 \\
\hline 40 & 0.376 & 0.402 & 40 & 0.361 & 0.387 & 40 & 0.341 & 0.365 \\
\hline 41 & 0.116 & 0.131 & 41 & 0.374 & 0.396 & 41 & 0.371 & 0.394 \\
\hline 42 & 0.224 & 0.24 & 42 & 0.11 & 0.125 & 42 & 0.127 & 0.143 \\
\hline 43 & 0.181 & 0.194 & 43 & 0.173 & 0.186 & 43 & 0.179 & 0.192 \\
\hline 44 & 0.129 & 0.138 & 44 & 0.123 & 0.131 & 44 & 0.129 & 0.138 \\
\hline 45 & 0.065 & 0.074 & 45 & 0.066 & 0.076 & 45 & 0.067 & 0.076 \\
\hline 46 & 0.054 & 0.06 & 46 & 0.042 & 0.049 & 46 & 0.056 & 0.063 \\
\hline 47 & 0.028 & 0.035 & 47 & 0.028 & 0.034 & 47 & 0.029 & 0.035 \\
\hline 48 & 0.046 & 0.054 & 48 & 0.048 & 0.055 & 48 & 0.044 & 0.051 \\
\hline 49 & 0.044 & 0.052 & 49 & 0.063 & 0.072 & 49 & 0.046 & 0.054 \\
\hline 50 & 0.014 & 0.02 & 50 & 0.014 & 0.02 & 50 & 0.014 & 0.02 \\
\hline
\end{tabular}

Table 10: Non-Hispanic Black alone (B1) and any-part-Black (APB) voting age population in the proposed remedial plans for state Senate.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{NCLCV-House} & \multicolumn{3}{|c|}{NCLCV-House} & \multicolumn{3}{|c|}{SL-4} & \multicolumn{3}{|c|}{SL-4} \\
\hline HD & B1VAP & APBVAP & HD & B1VAP & APBVAP & HD & B1VAP & APBVAP & HD & B1VAP & APBVAP \\
\hline 1 & 0.266 & 0.277 & 61 & 0.457 & 0.486 & 1 & 0.172 & 0.182 & 61 & 0.465 & 0.493 \\
\hline 2 & 0.335 & 0.351 & 62 & 0.115 & 0.127 & 2 & 0.292 & 0.307 & 62 & 0.152 & 0.166 \\
\hline 3 & 0.189 & 0.203 & 63 & 0.277 & 0.295 & 3 & 0.188 & 0.202 & 63 & 0.264 & 0.282 \\
\hline 4 & 0.219 & 0.23 & 64 & 0.114 & 0.126 & 4 & 0.244 & 0.255 & 64 & 0.128 & 0.141 \\
\hline 5 & 0.369 & 0.386 & 65 & 0.184 & 0.194 & 5 & 0.369 & 0.386 & 65 & 0.184 & 0.194 \\
\hline 6 & 0.216 & 0.24 & 66 & 0.31 & 0.336 & 6 & 0.222 & 0.246 & 66 & 0.309 & 0.335 \\
\hline 7 & 0.221 & 0.235 & 67 & 0.126 & 0.134 & 7 & 0.221 & 0.235 & 67 & 0.126 & 0.134 \\
\hline 8 & 0.333 & 0.353 & 68 & 0.072 & 0.081 & 8 & 0.361 & 0.381 & 68 & 0.082 & 0.093 \\
\hline 9 & 0.343 & 0.362 & 69 & 0.093 & 0.105 & 9 & 0.313 & 0.332 & 69 & 0.095 & 0.106 \\
\hline 10 & 0.349 & 0.37 & 70 & 0.065 & 0.072 & 10 & 0.323 & 0.344 & 70 & 0.066 & 0.074 \\
\hline 11 & 0.112 & 0.13 & 71 & 0.323 & 0.35 & 11 & 0.121 & 0.136 & 71 & 0.322 & 0.348 \\
\hline 12 & 0.373 & 0.385 & 72 & 0.371 & 0.393 & 12 & 0.373 & 0.385 & 72 & 0.383 & 0.404 \\
\hline 13 & 0.078 & 0.088 & 73 & 0.179 & 0.198 & 13 & 0.079 & 0.088 & 73 & 0.217 & 0.239 \\
\hline 14 & 0.112 & 0.134 & 74 & 0.108 & 0.12 & 14 & 0.121 & 0.144 & 74 & 0.118 & 0.13 \\
\hline 15 & 0.173 & 0.202 & 75 & 0.18 & 0.194 & 15 & 0.164 & 0.191 & 75 & 0.189 & 0.205 \\
\hline 16 & 0.106 & 0.116 & 76 & 0.199 & 0.21 & 16 & 0.107 & 0.117 & 76 & 0.199 & 0.21 \\
\hline 17 & 0.178 & 0.192 & 77 & 0.052 & 0.058 & 17 & 0.099 & 0.107 & 77 & 0.052 & 0.058 \\
\hline 18 & 0.13 & 0.144 & 78 & 0.081 & 0.089 & 18 & 0.188 & 0.203 & 78 & 0.052 & 0.058 \\
\hline 19 & 0.055 & 0.06 & 79 & 0.073 & 0.081 & 19 & 0.047 & 0.054 & 79 & 0.165 & 0.174 \\
\hline 20 & 0.04 & 0.048 & 80 & 0.099 & 0.108 & 20 & 0.07 & 0.081 & 80 & 0.09 & 0.098 \\
\hline 21 & 0.084 & 0.096 & 81 & 0.083 & 0.09 & 21 & 0.085 & 0.096 & 81 & 0.092 & 0.1 \\
\hline 22 & 0.272 & 0.285 & 82 & 0.183 & 0.2 & 22 & 0.272 & 0.285 & 82 & 0.191 & 0.209 \\
\hline 23 & 0.519 & 0.534 & 83 & 0.119 & 0.132 & 23 & 0.519 & 0.534 & 83 & 0.079 & 0.088 \\
\hline 24 & 0.371 & 0.386 & 84 & 0.154 & 0.166 & 24 & 0.369 & 0.385 & 84 & 0.155 & 0.167 \\
\hline 25 & 0.383 & 0.398 & 85 & 0.029 & 0.034 & 25 & 0.385 & 0.4 & 85 & 0.03 & 0.034 \\
\hline 26 & 0.173 & 0.189 & 86 & 0.057 & 0.064 & 26 & 0.165 & 0.181 & 86 & 0.057 & 0.064 \\
\hline 27 & 0.502 & 0.519 & 87 & 0.045 & 0.053 & 27 & 0.502 & 0.518 & 87 & 0.045 & 0.052 \\
\hline 28 & 0.158 & 0.171 & 88 & 0.32 & 0.341 & 28 & 0.158 & 0.17 & 88 & 0.228 & 0.247 \\
\hline 29 & 0.325 & 0.345 & 89 & 0.069 & 0.077 & 29 & 0.29 & 0.31 & 89 & 0.063 & 0.07 \\
\hline 30 & 0.243 & 0.26 & 90 & 0.032 & 0.039 & 30 & 0.288 & 0.307 & 90 & 0.032 & 0.038 \\
\hline 31 & 0.404 & 0.427 & 91 & 0.129 & 0.139 & 31 & 0.434 & 0.456 & 91 & 0.104 & 0.112 \\
\hline 32 & 0.42 & 0.434 & 92 & 0.319 & 0.345 & 32 & 0.419 & 0.434 & 92 & 0.318 & 0.344 \\
\hline 33 & 0.321 & 0.343 & 93 & 0.028 & 0.035 & 33 & 0.32 & 0.34 & 93 & 0.028 & 0.035 \\
\hline 34 & 0.093 & 0.104 & 94 & 0.049 & 0.055 & 34 & 0.105 & 0.117 & 94 & 0.049 & 0.055 \\
\hline 35 & 0.093 & 0.105 & 95 & 0.071 & 0.081 & 35 & 0.17 & 0.187 & 95 & 0.071 & 0.081 \\
\hline 36 & 0.058 & 0.069 & 96 & 0.089 & 0.1 & 36 & 0.073 & 0.086 & 96 & 0.092 & 0.105 \\
\hline 37 & 0.109 & 0.122 & 97 & 0.052 & 0.058 & 37 & 0.111 & 0.124 & 97 & 0.052 & 0.058 \\
\hline 38 & 0.305 & 0.324 & 98 & 0.075 & 0.086 & 38 & 0.416 & 0.439 & 98 & 0.074 & 0.085 \\
\hline 39 & 0.311 & 0.332 & 99 & 0.292 & 0.314 & 39 & 0.314 & 0.336 & 99 & 0.459 & 0.488 \\
\hline 40 & 0.316 & 0.339 & 100 & 0.29 & 0.316 & 40 & 0.097 & 0.11 & 100 & 0.334 & 0.36 \\
\hline 41 & 0.085 & 0.096 & 101 & 0.475 & 0.502 & 41 & 0.07 & 0.083 & 101 & 0.506 & 0.534 \\
\hline 42 & 0.384 & 0.415 & 102 & 0.302 & 0.323 & 42 & 0.376 & 0.42 & 102 & 0.309 & 0.33 \\
\hline 43 & 0.348 & 0.379 & 103 & 0.069 & 0.082 & 43 & 0.342 & 0.369 & 103 & 0.087 & 0.1 \\
\hline 44 & 0.365 & 0.411 & 104 & 0.092 & 0.103 & 44 & 0.4 & 0.438 & 104 & 0.086 & 0.098 \\
\hline 45 & 0.378 & 0.417 & 105 & 0.146 & 0.164 & 45 & 0.354 & 0.392 & 105 & 0.126 & 0.141 \\
\hline 46 & 0.282 & 0.295 & 106 & 0.451 & 0.481 & 46 & 0.251 & 0.264 & 106 & 0.351 & 0.376 \\
\hline 47 & 0.209 & 0.223 & 107 & 0.445 & 0.474 & 47 & 0.241 & 0.256 & 107 & 0.562 & 0.592 \\
\hline 48 & 0.346 & 0.371 & 108 & 0.107 & 0.116 & 48 & 0.346 & 0.371 & 108 & 0.137 & 0.147 \\
\hline 49 & 0.153 & 0.171 & 109 & 0.223 & 0.238 & 49 & 0.142 & 0.16 & 109 & 0.178 & 0.191 \\
\hline 50 & 0.174 & 0.185 & 110 & 0.169 & 0.18 & 50 & 0.174 & 0.185 & 110 & 0.187 & 0.198 \\
\hline 51 & 0.102 & 0.111 & 111 & 0.171 & 0.182 & 51 & 0.154 & 0.167 & 111 & 0.157 & 0.167 \\
\hline 52 & 0.199 & 0.212 & 112 & 0.469 & 0.493 & 52 & 0.218 & 0.231 & 112 & 0.308 & 0.331 \\
\hline 53 & 0.142 & 0.154 & 113 & 0.061 & 0.069 & 53 & 0.147 & 0.16 & 113 & 0.065 & 0.073 \\
\hline 54 & 0.137 & 0.149 & 114 & 0.035 & 0.042 & 54 & 0.106 & 0.116 & 114 & 0.077 & 0.086 \\
\hline 55 & 0.255 & 0.268 & 115 & 0.08 & 0.091 & 55 & 0.248 & 0.261 & 115 & 0.051 & 0.06 \\
\hline 56 & 0.096 & 0.111 & 116 & 0.046 & 0.055 & 56 & 0.094 & 0.109 & 116 & 0.033 & 0.04 \\
\hline 57 & 0.369 & 0.392 & 117 & 0.031 & 0.037 & 57 & 0.233 & 0.251 & 117 & 0.03 & 0.036 \\
\hline 58 & 0.363 & 0.386 & 118 & 0.011 & 0.015 & 58 & 0.456 & 0.484 & 118 & 0.011 & 0.015 \\
\hline 59 & 0.351 & 0.371 & 119 & 0.021 & 0.029 & 59 & 0.306 & 0.325 & 119 & 0.021 & 0.029 \\
\hline 60 & 0.286 & 0.304 & 120 & 0.008 & 0.013 & 60 & 0.328 & 0.347 & 120 & 0.008 & 0.013 \\
\hline
\end{tabular}

Table 11: Non-Hispanic Black alone (B1) and any-part-Black (APB) voting age population in the proposed remedial plans for the state House.

I declare under penalty of perjury that the foregoing is true and correct.

Executed:


Sworn and subscribed before me
this the 20 of February, 2022.


Notary Public


My Commission Expires:


State of California, county of Ala med q
Subscribed and sworn to (or affirmed) before me
\(\qquad\)
by \(\qquad\)
proved to me on the basis of satisfactory evidence to be the persons (s) who appeared before me.
```

